The network function \(f(s)= \dfrac{(s+2)}{(s+1)(s+3)}\), represe

The network function \(f(s)= \dfrac{(s+2)}{(s+1)(s+3)}\), represe
| The network function \(f(s)= \dfrac{(s+2)}{(s+1)(s+3)}\), represents

A. RC impedance

B. RL impedance

C. RC impedance and RL admittance

D. RC admittance and RL impedance

Please scroll down to see the correct answer and solution guide.

Right Answer is: B

SOLUTION

Concept

 Laplace transform RL and RC circuit is given below:

 

Laplace transform 

In the case of Impedance

\(L \to Ls\) , \( C \to \frac{1}{{Cs}}\)

In the case of Admittance

\(L \to \frac{1}{{Ls}}, C \to Cs\)

Given:

\( f\left( s \right) = \frac{{s + 2}}{{\left( {s + 1} \right)\left( {s + 3} \right)}}\)

By partial fraction 

\(\frac{{s + 2}}{{\left( {s + 1} \right)\left( {s + 3} \right)}} = \frac{A}{{s + 1}} + \frac{B}{{s + 3}}\)

\( A\left( {s = - 1} \right) = \frac{1}{2},B\left( {s = - 3} \right) = \frac{1}{2}\)

\(f\left( s \right) = \frac{1}{{2\left( {s + 1} \right)}} + \frac{1}{{2\left( {s + 3} \right)}}\)

\({z_1} = \frac{1}{{2s + 2}},\;{z_2} = \frac{1}{{2s + 6}}\)

So, the given network function is of RL impedance.